Quiz 4 Thermodynamics

February 6, 2020
Coal gasification is a process to convert solid fuel (coal) into a gas or liquid fuel. The original process resulted in the syngas "town gas" which was used as the first piped gaseous fuel for lighting and cooking in the UK and later in Germany. The product mixture has a specific enthalpy about half that of natural gas. The reaction runs at $2000^{\circ} \mathrm{C}$ and 0.1 MPa using an iron oxide catalyst. Coal is ground to $100 \mu \mathrm{~m}$ particles and suspended in the O_{2} and $\mathrm{H}_{2} \mathrm{O}$ streams. The heat of reaction at $25^{\circ} \mathrm{C}$ and 0.101 MPa is $\mathbf{- 9 1} \mathbf{~ k J} / \mathbf{m o l e}$ using the stoichiometry in the balanced reaction given below. Consider that the reactants are fed at $200^{\circ} \mathrm{C}$ and 0.2 MPa and the products are released at $2000{ }^{\circ} \mathrm{C}$ and $0.1 \mathrm{MPa} .95 \%$ of the coal is converted to $\mathbf{C O}$ at this temperature.
a) Is this reaction, under these conditions, exothermic or endothermic?
b) What Q is required per mole of the given stoichiometry?

The heat capacities, C_{p}, are given in the table below. Ignore the temperature dependence of the heat capacity.
c) Calculate the heat needed per mole of O_{2} to cool the exiting stream from $2000^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$. Consider all of the components for this step.
What could be done with this excess heat?
d) The raw gas exits the reactor after the heat exchanger at $250^{\circ} \mathrm{C}$ and 0.1 MPa . This gas stream must be compressed to 10 MPa for transmission by pipe to customers. For an adiabatic compressor with an efficiency, $\eta=0.85$, what power in Watts (or J/s) will be needed if the gas output is $5 \mathrm{~kg} / \mathrm{s}$ (enough to feed 700 houses)? Consider that the exit gas stream is just H_{2} and $C O$ in a 1:3 molar ratio for this step. Use the molar average C_{p} and molecular weight. The molecular weights are in the table below. -First calculate the power for $\Delta S=0$, then apply the efficiency to obtain the actual work.
e) What will be the exit temperature for the compressor?
f) This is not the normal process for a large compression process. Can you guess at how this last compression/cooling would normally be carried out? (Extra credit)

```
3C (i.e., coal) + O2 + + +
```


Moles	$\mathrm{C}(\mathrm{s})$	$\mathrm{O} 2(\mathrm{~g})$	$\mathrm{H} 2 \mathrm{O}(\mathrm{v})$	$\mathrm{H} 2(\mathrm{~g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{T},{ }^{\circ} \mathrm{C}$
in	3					
out						
Cp, J/(moleK)	21.2	29.3	33.6	29.2	29.2	-
Molecular Weight g/mole	12	32	18	2	28	-
Part a: Endo or Exo?						
Part b: $\mathrm{Q}=$						
Part c: Q =						
Part c: What to do with this heat?						
Part d: Power in Watts?						
Part e: Exit Temperature $=$						

1 atmosphere is $14.7 \mathrm{psi}, 1.01 \mathrm{bar}, 0.101 \mathrm{MPa}, 760 \mathrm{mmHg}, 29.9 \mathrm{inHg}$
Gas Constant, R

$$
\begin{aligned}
& =8.31447 \mathrm{~J} / \mathrm{mole}-\mathrm{K}=8.31447 \mathrm{~cm}^{3}-\mathrm{MPa} / \text { mole }-\mathrm{K}=8.31447 \mathrm{~m}^{3}-\mathrm{Pa} / \mathrm{mole}-\mathrm{K} \\
& =8,314.47 \mathrm{~cm}^{3} \mathrm{kPa} / \text { mole }-\mathrm{K}=83.1447 \mathrm{~cm}^{3}-\mathrm{bar} / \text { mole }-\mathrm{K}=1.9859 \mathrm{Btu} / \mathrm{lbmole}-\mathrm{R}^{(\text {see note } 1)} \\
& =82.057 \mathrm{~cm}^{3}-\mathrm{atm} / \text { mole-K }=1.9872 \mathrm{cal} / \text { mole-K }{ }^{(\text {see note } 2)}=10.731 \mathrm{ft}^{3}-\text { psia/lbmole-R }
\end{aligned}
$$

Process Type	Work Formula (ig)
Isothermal	$W_{E C}=-\int P d V=-R T \int \frac{d V}{V}=-R T \ln \frac{V_{2}}{V_{1}}$ (ig)
Isobaric	$W_{E C}=-\int P d V=-P\left(V_{2}-V_{1}\right) \quad$ (ig)
Adiabatic and reversible	$\begin{equation*} W_{E C}=-\int P d V=-\int \operatorname{const} \frac{d V}{V^{\left(C_{p} / C_{v}\right)}} \tag{*ig} \end{equation*}$ or $\begin{gather*} \Delta U=C_{V}\left(T_{2}-T_{1}\right)=W_{E C} \tag{*ig}\\ \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\left(R / C_{p}\right)}=\left(\frac{V_{1}}{V_{2}}\right)^{\left(R / C_{r}\right)} \tag{*ig} \end{gather*}$

$$
Q_{\mathrm{rev}}=\Delta U \text { for isochoric (constant volume) }
$$

$$
\mathrm{d} U=C_{\mathrm{v}} \mathrm{~d} T \text { for isochoric (constant volume) }
$$

$$
C_{\mathrm{p}}=C_{\mathrm{v}}+R \text { (exact for ideal gas) }
$$

$$
\Delta H=\Delta U+\Delta(P V)=\Delta U+R(\Delta T)(\text { exact for ideal gas })
$$

$$
T_{2} / T_{1}=\left(P_{2} / P_{1}\right)^{\mathrm{R} / \mathrm{Cp}}=\left(V_{1} / V_{2}\right)^{\mathrm{R} / \mathrm{Cv} v}
$$

$\Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{P}}{T} d T \quad \Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{V}}{T} d T$

$$
\begin{array}{ll}
\hline \hline \text { (1) } \text { Constant pressure. } & \text { () Constant volume. }
\end{array}
$$

$$
\Delta S^{i g}=R \ln \left[\frac{V_{2}}{V_{1}}\right] \text { or } \Delta S^{i g}=-R \ln \left[\frac{P_{2}}{P_{1}}\right]
$$

(4) Isothermal.

$$
\Delta S=\int_{\text {state } 1}^{s t a t e ~} 2 \frac{d Q_{\text {rev }}}{T_{s y s}}=0 \text { for reversible process only. }
$$

$$
\Delta S^{v a p}=\frac{\Delta H^{v a p}}{T^{\text {sat }}} \text { and } \Delta S^{\text {fus }}=\frac{\Delta H^{f u s}}{T_{m}}
$$

(Adiabatic and reversible.

$$
\begin{array}{r}
\Delta S^{i g}=\frac{C_{V}}{T} d T+\frac{R}{V} d V \Delta S^{i g}=C_{V} \ln \frac{T}{T^{i}}+R \ln \frac{V}{V^{i}} \text { or } \Delta S^{i g}=C_{P} \ln \frac{T}{T^{i}}-R \ln \frac{P}{P^{i}} \Delta\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{V}}{T} \\
\Delta\left(\frac{\partial S}{\partial T}\right)_{P}=\frac{C_{P}}{T}
\end{array}
$$

Moles	C (s)	$02(\mathrm{~g})$	H2O (v)	H2 (g)	$\mathrm{CO}(\mathrm{g})$	T, ${ }^{\circ} \mathrm{C}$
in	3	1	1	0	0	200
out	0.15	0.05	0.05	0.95	2.85	2000
Cp, 1/(molek)	21.2	29.3	33.6	29.2	29.2	-
Molecular Weight g/mole	12	32	18	2	28	-
Part a: Endo or Exo?			Endo therm,e			
Part b: $\mathrm{Q}=$			123 kJ per norl			
Part e: $\mathrm{Q}=$			$205 \mathrm{~kJ} \text { per mele }$			
Part c: What to do with this heat?			Heat Reartantr			
Part d: Power in Watts?			11.5 MW			
Part e: Exit Temperature =			$1930^{\circ} \mathrm{C}(2210 \mathrm{~K})$			

Answar Quiz 4

Pikduets $\begin{array}{llllll}\mathrm{O}_{2} & 0.05 & 29.3 & 117 \mathrm{~J} / \mathrm{K} & 1980 \mathrm{~K} & 232 \mathrm{~kJ}\end{array}$

$$
\begin{array}{lll}
1 \mathrm{t}_{2} & 0.95 & 29.2 \\
10 & 2.85 & 29.2
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
\text { neatoids } \begin{array}{ccc}
\mathrm{C} & 3.00 & 21.2 \\
\mathrm{O}_{2} & 1.00 & 29.3 \\
\mathrm{H}_{2} \mathrm{O} & 1.00 & 33.6 \\
\mathrm{H}_{2} & 0 & 29.2 \\
\mathrm{CO} & 0 & 29.2
\end{array} \quad 126.5 \mathrm{~K} 175 \mathrm{~K} & \\
\end{array} \\
& \Delta H_{R_{x n}}^{0} \quad 0.95 \quad-91 \mathrm{~kJ} / \mathrm{male} \frac{-86.5 \mathrm{~kJ}}{Q_{n \times n}=123 \mathrm{~kJ}} \\
& \text { En do theimic } \\
& \text { Per } 1 \text { mele } \mathrm{O}_{2}
\end{aligned}
$$

b) $Q_{R x_{n}}=123 \mathrm{~kJ}$
c) $\left(\Sigma_{n} C_{p}\right) \Delta T=117 \frac{J}{K} \quad 1750 \mathrm{~K}=205 \mathrm{~kJ}$

Thiscould be used to heat the reostonts
d) Cpisthe some fer $\mathrm{H}_{2} \$ \mathrm{CO}$

$$
\left\langle M_{n}\right\rangle^{C_{P}=29,2 \mathrm{~J} / \mathrm{molk}}=\frac{\left(3.28_{a} \mathrm{~V} / \mathrm{cal}+1+2 \mathrm{glol}\right)}{4}=21,5 \mathrm{~g} / \mathrm{mal}
$$

$1000 \mathrm{~g} 5 \mathrm{~kJ} / \mathrm{s} / 21,5 \mathrm{~g} / \mathrm{ml}=233 \frac{\mathrm{mols}}{\mathrm{s}}$

For $O S=0$

$$
\begin{aligned}
& O=C_{\rho} \ln \left(\frac{T_{F}}{T_{1}}\right)-R \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& \begin{aligned}
T_{F}^{\prime}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{p}}=523 \mathrm{~K}\left(\frac{10 \mathrm{w} / \mathrm{m}}{0.1 \mathrm{~m} / \mathrm{a}}\right)^{\frac{1}{3,5}}=1950 \mathrm{~K} \\
\left(16800^{\circ} \mathrm{C}\right)
\end{aligned} \\
& \Delta H^{\prime}=W_{S}^{\prime}=29.2 \frac{\mathrm{~J}}{\mathrm{mdL}}\left(168 \mathrm{~B}^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}\right) \\
& (a=0)=41.8 \mathrm{~kJ} / \text { mole } \\
& \Delta H=\frac{\Delta H^{\prime}}{\eta}=\frac{41.8 \mathrm{kT} / \mathrm{mol}}{0.85}=49.2 \mathrm{~kJ} / \mathrm{nole}
\end{aligned}
$$

$p_{\text {cower }}=49.2 \mathrm{~kJ} / \mathrm{smolel} 233 \mathrm{mab} / \mathrm{s}=41.5 \mathrm{~mW}$
e)

$$
\begin{aligned}
\Delta H & =C_{p}\left(T_{f}-T_{i}\right)=49.2 \mathrm{~kJ} / \mathrm{mole} \\
T_{f} & =\frac{49.2 \mathrm{kT} / \mathrm{mllilocog}}{29.2 \mathrm{~kJ} / \mathrm{molk}}+250^{\circ} \mathrm{C} \\
& =1930 \mathrm{C} \\
& (2210 \mathrm{~K})
\end{aligned}
$$

